Google DeepMind: What is it, how does it work and should you be scared?
DeepMind cofounder Mustafa Suleyman gave a rare insight into the work he and his team are doing within Google during a machine learning conference in London this month.
What is DeepMind?
Google DeepMind is an artificial intelligence division within Google that was created after Google bought Oxford University spinout, DeepMind, for a reported £400 million in January 2014.
The division, which employs around 140 researchers at its lab in a new building at Kings Cross, London, is
on a mission to solve general intelligence and make machines capable of
learning things for themselves. It plans to do this by creating a set
of powerful general-purpose learning algorithms that can be combined to
make an AI system or “agent”.
Suleyman explains
These are systems that learn
automatically. They’re not pre-programmed, they’re not handcrafted
features. We try to provide a large set of raw information to our
algorithms as possible so that the systems themselves can learn the very
best representations in order to use those for action or classification
or predictions.
The systems we design are inherently
general. This means that the very same system should be able to operate
across a wide range of tasks.
That’s why we’ve started as we have with
the Atari games. We could have done lots of really interesting problems
in narrow domains had we spent time specifically hacking our tools to
fit the real world problems - that could have been very, very valuable.
Instead we’ve taken the principle approach of starting on tools that are inherently general.
AI has largely been about pre-programming
tools for specific tasks: in these kinds of systems, the intelligence
of the system lies mostly in the smart human who programmed all of the
intelligence into the smart system and subsequently these are of course
rigid and brittle and don’t really handle novelty very well or adapt to
new settings and our fundamentally very limited as a result.
We characterise AGI as systems and tools which are flexible and adaptive and that learn.
We use the reinforcement learning
architecture which is largely a design approach to characterise the way
we develop our systems. This begins with an agent which has a goal or
policy that governs the way it interacts with some evironment. This
environment could be a small physics domain, it could be a trading
environment, it could be a real world robotics environment or it could
be a Aatari environment.The agent says it wants to take actions in this
environment and it gets feedback from the environment in the form of
observations and it uses these observations to update its policy of
behaviour or its model of the world.
How does it work?
The technology behind DeepMind is complex
to say the least but that didn’t stop Suleyman from trying to convey
some of the fundamental deep learning principles that underpin it. The
audience - a mixture of software engineers, AI specialists, startups,
investors and media - seemed to follow.
Suleyman explains
You’ve probably heard quite a bit about
deep learning. I’m going to give you a very quick high-level overview
because this is really important to get intuition for how these systems
work and what they basically do.
These are hierarchical based networks
initially conceived back in the 80s but recently resuscitated by a bunch
of really smart guys from Toronto and New York.
The basic intuition is that at one end we
take the raw pixel data or the raw sensory stream data of things we
would like to classify or recognise.
This seems to be a very effective way of
learning to find structure in very large data sets. Right at the very
output we’re able to impose on the network some requirement to produce
some set of labels or classifications that we recognise and find useful
as humans.
How is DeepMind being tested?
DeepMind found a suitably quirky way to test what it’s team of roughly 100 people have been busy building.
The intelligence of the DeepMind’s systems was put through its paces by an arcade gaming platform that dates back to the 1970s.
Suleyman demoed DeepMind playing one of
them during his talk - Space Invaders. In his demo he illustrated how a
DeepMind agent learns how to play the game with each go it takes.
Suleyman explains
We use the Atari test bed to develop and test and train all of our systems…or at least we have done so far.
There is somewhere on the magnitude of 100 different Atari games from the 70s and 80s.
The agents only get the raw pixel inputs
and the score so this is something like 30,000 inputs per frame. They’re
wired up to the action buttons but they’re not really told what the
action buttons do so the agent has to discover what these new tools of
the real world actually mean and how they can utilise value for the
agent.
The goal that we give them is very simply to maximise score; it gets a 1 or a 0 when the score comes in, just as a human would.
Everything is learned completely from
scratch - there’s absolutely zero pre-programmed knowledge so we don’t
tell the agent these are Space Invaders or this is how you shoot. It’s
really learnt from the raw pixel inputs.
For every set of inputs the agent is
trying to assess which action is optimal given that set of inputs and
it’s doing that repeatedly over time in order to optimise some longer
term goal, which in Atari’s sense, is to optimise score. This is one
agent with one set of parameters that plays all of the different games.
Live space invaders demo
An agent playing space invaders before
training struggles to hide behind the orange obstacles, it’s firing
fairly randomly. It seems to get killed all of the time and it doesn’t
really know what to do in the environment.
After training, the agent learns to
control the robot and barely loses any bullets. It aims for the space
invaders that are right at the top because it finds those the most
rewarding. It barely gets hit; it hides behind the obstacles; it can
make really good predictive shots like the one on the mothership that
came in at the top there.
As those of you know who have played this
game, it sort of speeds up towards the end and so the agent has to do a
little bit more planning and predicting than it had done previously so
as you can see there’s a really good predictive shot right at the end
there.
100 games vs 500 games
The agent doesn’t really know what the
paddle does after 100 games, it sort of randomly moves it from one side
to the other. Occasionally it accidentally hits the ball back and finds
that to be a rewarding action. It learns that it should repeat that
action in order to get reward.
After about 300 games it’s pretty good and it basically doesn’t really miss.
But then after about 500 games, really
quite unexpectedly to our coders, the agent learns that the optimal
strategy is to tunnel up the sides and then send them all around the
back to get maximum score with minimum effort - this was obviously very
impressive to us.
We’ve now achieved human performance in 49/57 games that we’ve tested on and this work was recently rewarded with a front cover of Nature for our paper that we submitted so we were very proud of that.
We Are Fossasia Stay Connected With Us On Twitter . . . ! ! !
We Are Fossasia Stay Connected With Us On Twitter . . . ! ! !
How is it being used across Google?
Google didn’t buy DeepMind for nothing.
Indeed, it’s using certain DeepMind algorithms to make many of its
best-known products and services smarter than they were previously.
Suleyman explains
Our deep learning tool has now been deployed in many environments, particularly across Google in many of our production systems.
In image recognition, it was famously
used in 2012 to achieve very accurate recognition on around a million
images with about 16 percent error rate. Very shortly after that it was
reduced dramatically to about 6 percent and today we’re at about 5.5
percent. This is very much parable with the human level of ability and
it’s now deployed in Google+ Image Search and elsewhere in Image Search
across the company.
As you can see on Google Image Search on
G+, you're now able to type a word into the search box and it will
recall images from your photographs that you’ve never actually hand
labelled yourself.
We’ve also used it for text and
scription. We use it to identify text on shopfronts and maybe alert
people to a discount that’s available in a particular shop or what the
menu says in a given restaurant. We do that with an extremely high level
of accuracy today. It’s being used in Local Search and elsewhere across
the company.
We also use the same core system across
Google for speech recognition. It trains roughly in less than 5 days. In
2012 it delivered a 30 percent reduction in error rate against the
existing old school system. This was the biggest single improvement in
speech recognition in 20 years, again using the same very general deep
learning system across all of these.
Across Google we use what we call Tool AI
or Deep Learning Networks for fraud detection, spam detection, hand
writing recognition, image search, speech recognition, Street View
detection, translation.
Sixty handcrafted rule-based systems have
now been replaced with deep learning based networks. This gives you a
sense of the kind of generality, flexibility and adaptiveness of the
kind of advances that have been made across the field and why Google was
interested in DeepMind.
The number of scientists and world-famous
entrepreneurs speaking out on the potential dangers of AI is increasing
week-by-week, with renowned physicist Stephen Hawking and PayPal
billionaire Elon Musk being two of the most outspoken anti-AI
advocates.
The pair, along with several others
including Bill Gates and Sky cofounder Jaan Tallinn, believe that
machines will soon become more intelligent than humans, just as they do
in recent Hollywood blockbuster Ex Machina.
Despite this, Google is keen to develop
its AI algorithms as much as possible in order to improve its offerings
and boost its profits.
Suleyman tried to put people’s minds at ease and explain the logic behind all the hype.
Suleyman explains
Over the last 18 months or so, AI
breakthroughs have, I think, created a sense of anxiety or in some cases
hype around the potential long term direction of the field.
This of course is not least induced by
Elon [Musk] who recently Tweeted that we need to be super careful with
AI because it’s “potentially more dangerous than nukes” and that’s
obviously backed up by various publications including Nick Bostrom’s -
all culminating in this kind of sense that AI has the potential to end
all human kind.
If you didn’t really pay attention to the
field and all you did was read, as I think the vast majority of people
do, descriptions of the kind of work that we do on the web then you
could be forgiven for believing that AI is actually about this. Whether
it’s Terminator coming to blow us up or societies of AIs or mad
scientists looking to create quite perverted women robots.
This narrative has somehow managed to dominate the entire landscape, which I think we find really quite remarkable.
It’s true that AI has in some sense
really arrived. This isn’t just a summer. These are very concrete
production breakthroughs that really do make a big different but it’s
also sad how quickly we adapt to this new reality. We rarely take time
to acknowledge the magic and the potential of these advances and the
kind of good that they can bring. In some sense, the narrative has
shifted from isn’t it terrible that AI has been such a failure to isn’t
it terrible that AI has been such a success.
Just to address directly this question of
existential risk. Our perspective on this is that it’s become a real
distraction from the core ethics and safety issues and that it’s
completely overshadowed the debate.
The way we think about AI is that it’ll
be a hugely powerful tool that we control and direct whose capabilities
we limit, just as we do with any other tool that we have in the world
around us, whether they’re washing machines or tractors.
Ex Machina sees a powerful CEO create super-intelligent AIs that turn against him ©Universal |
These are tools that we designed that we
can control. We should explicitly be designing these systems such that
we are able to control them and where we fear there’s a risk that we’re
not able to control them, then that’s I think when we should be slowing
down, just as we have in many other sectors, from nuclear development to
chemical weapons or the like.
We’re building them to empower humanity,
absolutely not to destroy us.I think our technology has the potential to
really positively transform the world if we can steward it in the right
direction and imagine new mechanisms of governance and accountability
and transparency that involve a broader group in the process of
directing the application of our technology.
There are many, many much more urgent
concerns we need to direct our attention to. This conversation around
whether we’ll have human-like intelligences wondering around absorbing
all the information that’s ever been created and giving them rights and
being conscious - these are just so…there are a few engineers in the
room who will know how difficult it is to get these things to do
anything.The idea that we should be spending these moments now talking
about consciousness and robot right is really quite preposterous.
I don’t mean to be dismissive, these are
serious concerns and we put a great deal of effort and a great deal of
our negotiating capital into establishing what we think is a reasonably
effective process. We’re introducing additional oversight and
accountability into the way that we steward our technology with the
establishment of our ethics and safety board.
These are important issues, we do need to
discuss them but we also need to focus on what else is at stake in the
world today. How can these tools be useful elsewhere? 800 million people
don’t have access to clean water, rising to 1.8 billion in the next
decade alone. One of the most fundamental rights beyond so many people
on our planet. 800 million people are malnourished but a third of the
food we produce is wasted every year.
Looking ahead
Google has pledged to set up an ethics board to
monitor its internal AI developments. Interestingly, this was one of
DeepMind's prerequisites to signing the acquisition papers, suggesting
that Suleyman knows AI has potential to do harm.
A number of people have already been appointed to
the board but Google has refused to reveal who they are. Suleyman said
he wants the names to be revealed.
"We will [publicise the names], but that isn’t
the be-all and end-all. It’s one component of the whole apparatus,” he
said, adding that he was impressed a 100-strong company like DeepMind
was able to convince Google to set up the board in the first place.
Some believe that the board should be
appointed with the help of other organisations and public oversight but
Google has so far decided to act independently.
The event was organised by, Playfair Capital, an
early stage technology VC based in London with a thematic focus on
machine intelligence.
Source : techworld
No comments:
Post a Comment